If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+14X=39
We move all terms to the left:
X^2+14X-(39)=0
a = 1; b = 14; c = -39;
Δ = b2-4ac
Δ = 142-4·1·(-39)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4\sqrt{22}}{2*1}=\frac{-14-4\sqrt{22}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4\sqrt{22}}{2*1}=\frac{-14+4\sqrt{22}}{2} $
| 200/12=b/24 | | 9h+11=7 | | 70-2x=60-x | | 5,9x+2,3x=27,88 | | 5(y-12)=3(y-12)/20 | | 6+2=2x-1 | | (x+1)•(x+2)=42 | | 2y-48-152=42 | | -5u-2u=-19 | | 3(x–6)=8x–3(3x+7) | | 183-v=226 | | 3,2x=12,8 | | -110=5(2+4n) | | 6x+1+x+19=95 | | 6x+1+x19=95 | | -4(5x-6)=-76 | | 3e-18=(-3-3/4e) | | 7x-10=3x+2(2x-5) | | 12x-8=30x+5 | | 5(2m+6)=80 | | 10m-20=30 | | -4/5t+2/5=2/8 | | x+16=-2x-14 | | 6x−9=3x-5 | | 2x=+7+15 | | 2x-3/8+1/2=5/2 | | .4=-2x-3 | | 6x-9=3x-4 | | 4(2a-5)=68 | | 16=-2m+8+3m | | 4(x-3)=4-(5x-29) | | (m^2+1)=0 |